Skip to content

Rob Sterling

Mockingbird Academy Student

  • Facebook
  • Twitter
  • Home
  • About
  • Math
  • Chemistry
  • Physics
  • Contact
  • Tensors

Axioms of Boolean Algebra

Associativity

a \lor (b \lor c) = a \lor (b \lor c)

a \wedge (b \wedge c) = a \wedge (b \wedge c)

Commutativity

a \lor b = b \lor a

a \wedge b = b \wedge a

Identity Elements

a \lor 0 = a

a \wedge 1 = a

Absorption

a \lor (a \wedge b) = a

a \wedge (a \lor b) = a

Distributivity

a \lor (b \wedge c) = (a \lor b) \wedge (a \lor c)

a \wedge (b \lor c) = (a \wedge b) \lor (a \wedge c)

Complements

a \lor \neg a = 1

a \wedge \neg a = 0

no name yet for the next one

a = b \wedge a \leftrightarrow a \lor b = b

Share this:

  • Click to share on X (Opens in new window) X
Like Loading...

Topics

  • Algebra
  • Linear Algebra
  • Abstract Algebra
  • Geometry
  • Calculus
Create a website or blog at WordPress.com
  • Subscribe Subscribed
    • Rob Sterling
    • Already have a WordPress.com account? Log in now.
    • Rob Sterling
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Copy shortlink
    • Report this content
    • View post in Reader
    • Manage subscriptions
    • Collapse this bar
%d