Matrices

  • plural – matrices
  • singular – matrix

A matrix is an ordered structure with rows and columns. A matrix is a tensor with rank 2. Matrices is a topic studied in Linear Algebra.

Similar to vectors, we add matrices by adding like components:

 \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 4 & 5 \\ 6 & 7 & 8 \end{bmatrix}

Scalar Multiplication involves multiplying a scalar against all the components of a matrix.

3 \begin{bmatrix} 1 & 2  \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 9 & 12 \end{bmatrix}

Matrix Multiplication, the multiplication of one matrix by another, is fairly complicated and it deserves its own page.

*******

Content below is to test different kinds of brackets for a “matrix”:

  1. b –

 \begin{bmatrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{bmatrix}

2. B –

 \begin{Bmatrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{Bmatrix}

3. p –

 \begin{pmatrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{pmatrix}

4. no letter

 \left\langle\begin{matrix} 1 & 2 & 3 \\4 & 5 & 6 \\7 & 8 & 9 \end{matrix}\right\rangle