Skip to content

Rob Sterling

Mockingbird Academy Student

  • Facebook
  • Twitter
  • Home
  • About
  • Math
  • Chemistry
  • Physics
  • Contact
  • Tensors

Wedge Product

u \wedge v = u \otimes v - v \otimes u

The symbol \otimes designates an Outer Product.

u \wedge v = \begin{bmatrix} u_1\overline{v_1} - v_1\overline{u_1} & u_1\overline{v_2} - v_1\overline{u_2} & u_1\overline{v_3} - v_1\overline{u_3} \\u_2\overline{v_1} - v_2\overline{u_1} & u_2\overline{v_2} - v_2\overline{u_2} & u_2\overline{v_3} - v_2\overline{u_3} \\u_3\overline{v_1} - v_3\overline{u_1} & u_3\overline{v_2} - v_3\overline{u_2} & u_3\overline{v_3} - v_3\overline{u_3} \end{bmatrix}

The wedge product of two vectors in ℝ³ gives the area of parallelogram they enclose.

Share this:

  • Click to share on X (Opens in new window) X
Like Loading...

Topics

  • Algebra
  • Linear Algebra
  • Abstract Algebra
  • Geometry
  • Calculus
Create a website or blog at WordPress.com
  • Subscribe Subscribed
    • Rob Sterling
    • Already have a WordPress.com account? Log in now.
    • Rob Sterling
    • Subscribe Subscribed
    • Sign up
    • Log in
    • Copy shortlink
    • Report this content
    • View post in Reader
    • Manage subscriptions
    • Collapse this bar
%d